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Abstract 

From the Physics of Software perspective, software is a material, reacting to forces according to its own 

properties and shape. A shape based exclusively on function (or method) calls and parameter (or 

message) passing is characterized by weak compressive strength, manifested by well-known design and 

maintenance issues. Known solutions exist within both the functional and object oriented paradigm, 

although their relationship with compressive strength has not been well understood so far. Some of 

those solutions have been abused where no compressive strength was required, and therefore 

prematurely labelled as “anti-patterns”. A more precise understanding of forces will lead to more 

informed design decisions and avoid further pendulum swings. 

 

 

Introduction 

One of the goals of my work on the Physics of 

Software [1] is to gradually formalize a model of 

software as a material, where non-functional 

properties are defined as reactions to stimuli, or 

forces. 

Today, the idea that software constructs may 

exhibit anything like compressive strength may 

seem far-fetched, as we normally consider 

software immaterial.  

However, just like we choose and shape physical 

materials to respond best to contextual forces, 

so we do for software. We just don’t know the 

forces well enough to recognize and name them 

properly. 

I’ll start by illustrating how framing  properties 

of physical materials as reactions to forces 

provides guidance in their adoption and helps 

shape them properly, and how this 

understanding suggests different shapes when 

different materials are adopted. I’ll then move 

to consider a known phenomenon in software 

evolution under the perspective of the physics 

of software, uncovering both a force and a 

property defined as reaction to such force. 



Beams and Arches 

The simplest structure that can bridge two 

points is a beam, as represented in fig.1. The 

beam is loaded with its own weight, plus any 

additional weight (structures, vehicles, water) 

that it’s being designed to carry. 

 

Fig. 1 

That type of loading results in the beam bending, 

as represented (greatly exaggerated for 

emphasis) in fig. 2. 

 

Fig. 2 

Bending, in turn, exerts compression on the 

material on top of the beam and tension on the 

material on the bottom (fig. 3). 

 
Fig. 3 

Construction materials easily available to early 

civilizations (stone, marble, wood) tend to have 

good compressive strength (ability to sustain 

compression) and poor tensile strength (ability 

to sustain tension). With reference to fig. 3, they 

would “break on the bottom”, where tensile 

strength is required. Therefore, a bridging 

structure shaped as a simple beam was not a 

good fit for the material, and when adopted 

required a narrow distance between columns. 

The roman arch (fig. 4) was conceived exactly to 

transfer most of the load in form of 

compression. A change in shape was therefore 

required due to the low tensile strength of the 

adopted materials. 

Fig. 4 

When materials with high tensile strength 

(mostly steel) became available, the beam 

(especially the I-beam) in turn became a better 

fit; other shapes, like suspension bridges, also 

became more popular. 



Of course, given enough pressure, any material 

will fail. Materials will fail under compression in 

different ways; some will fracture from top to 

bottom as the timber block under test in fig. 5: 

 

Fig. 5 

 

It’s ok to fail 

Before we move to software, I think it’s 

important to reflect on the objective and 

dispassionate perspective of science. Having low 

tensile strength is not considered a shame; in 

fact, marble is still routinely used in many roles 

where tensile strength is not required.  

Conversely, there are also no attempts to 

construe tensile strength as irrelevant or 

overshadowed by other “more important” 

properties. Instead, we recognize reality and 

learn to shape our material so that compression 

is carried more than tension when needed. Of 

course, materials may have other properties 

more desirable, in a specific context, than tensile 

strength.  

                                                           
1 Similar file formats are quite common in the industry. 
Images, GPS / fitness data, lab measurements, etc. are 
often structured in files with a similar information 
architecture. 

Parameter Passing 

A good theory should be informed by practice, 

observation and experiments, so let’s start from 

a realistic example – parsing a “complex” file 

format. 

Let’s say that we need to parse a binary file 

organized into a header, containing a number of 

meta-data about the file itself, followed by the 

actual contents, organized in a number of 

sections having variable length, possibly with 

nested sub-sections, down to domain-specific 

values (coordinates, or colors, or quantities) 

mapped to the usual strings, integers and 

floats1. 

For sake of simplicity, we can simply ignore that 

we’re reading a file and consider the similar 

problem of parsing data from an in-memory 

array, removing the need for I/O and mapping 

more directly into a functional world. 

It would seem reasonable to organize the parser 

using a functional decomposition that mirrors 

the information structure / grammar of the data 

being parsed (fig. 6). 

That’s relatively straightforward, until you 

realize that one of the parameters in the 

headers is describing the binary format of 

integers in the contents section – big endian or 

little endian2. 

 

 

2 I am setting this as a design problem, as all this 
information is potentially available upfront. In practice, in 
a number of real-world cases this would manifest as a 
maintenance problem, as information is gradually 
discovered or changes are required due to new 
requirements. Incremental discovery only amplifies the 
issues discussed in what follows. 



 

Fig. 6 

 

That can be easily solved by passing that 

information as a parameter, from the “parse 

file” function (which got it from “parse header”) 

down to the “parse contents” and further down 

to all the “parse int” occurrences.  

 

Of course, by doing so we need to change the 

entire chain of calls from the top level – where 

information is known – to the bottom level – 

where information is needed. We need to 

break the existing interface of every involved 

function. We need to crack every function open 

and change its implementation to forward the 

new parameter down the chain.  

All the intermediate functions are “fractured” by 

this change, top to bottom, just like the timber 

log in fig. 5, without any local need or benefit – 

those functions are concerned with parsing 

complex structures and don’t need to know the 

integer format. 

The fracturing, of course, does not stop there. As 

you progress, you learn that strings can be 

marked as UTF-8 or as ANSI in the header. You 

need to pass that information down. Another 

crack is opening. Colors might be represented as 

RGB, ARGB, etc. Another fracture. 

At that point, many programmers will move 

from a number of small fractures to a single 

large fracture, passing an algebraic data type 

that may more or less correspond to the entire 

header, so that individual functions can “pick” 

the parts they need. At least this will prevent 

further fractures: we’ll simply make the single 

fracture larger on demand, by adding fields to 

that single type as required.  

This is ok syntactically - semantically we still 

have a large chunk of information going through 

a number of functions just to be passed 

downstream. Depending on the organization of 

the different sections and sub-sections, the 

richness of the header, etc., that lump of 

information will probably lack cohesion or, in 

the more precise formulation within the Physics 

of Software, fields won’t be Read/Read 

entangled [2], [3] either in the artifact space and 

Parse file 
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Parse contents 
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in the run-time space, and therefore should not 

be kept together if we aim for locality of action3; 

however, we may still opt to do so because it 

looks like the most convenient option. Worst 

case: we pass the entire set of configuration 

data down to “parse int” and it will pick the only 

parameter that’s actually needed (endianness). 

While the example above is built around factual 

knowledge (data) needed by a bottom layer and 

known only at the top layer, an identical 

scenario would present itself if the knowledge 

was operational (functions). As you discover 

new operational knowledge to be passed 

downstream, the intermediate layer will 

fracture just like when passing data. 

There are, of course, known solutions to this 

problem, but not within function composition 

and parameter passing. Composition, often 

touted as the quintessential tool in the 

functional arsenal, does not help at all here. The 

only place where we know enough to 

“compose” the right function is the top level; the 

place where we may want to use the 

“composed” function is the bottom level. “Parse 

int” was a direct function call in the initial 

implementation, so we still have to fracture all 

the functions from top to bottom to pass it as a 

parameter. 

In the contemporary narrative of computing, 

this is where we normally split between the 

apologetics – trying to prove that parameter 

passing is still the best thing on earth – and the 

harsh critics, quick to define parameter passing 

as a dangerous anti-pattern. 

                                                           
3 The shortcomings of passing a large type are probably 
more self-evident if you consider some of the layers as 
modules that have to carry downstream data they have 
no use for – and unstable data inasmuch as we keep 
adding fields. 

The perspective of science is different, and in 

itself quite simple: if indeed we are cracking that 

stack of functions top to bottom, there must be 

some force at play, and we should identify the 

force, and then characterize our materials 

according to their reaction to that force. 

 

Information differential 

Moving away from the concrete example above, 

we can now consider a general case where a 

function f1 owns some information K that is 

required by a function fn, which is indirectly 

called by f1 through a series of function calls to 

f2 … fn-1, where  f2 … fn-1 have no use for K. 

This can be represented as in fig. 7: 

Fig. 7 
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An alternative representation, more aligned 

with the following reasoning (albeit less aligned 

with traditional representations of software 

artifacts) is provided in fig. 8, where function f1 

is characterized by an “excess” of information K, 

fn by a lack of information K, while f2 … fn-1 would 

ideally be oblivious to / isolated from K. 

  

Fig. 8 

 

The unbalance (differential) in information 

contents is creating a force of attraction (see fig. 

9) between f1 and fn, even though they are 

“distant” in the logical and physical 

decomposition of our code. That force has to be 

balanced through the choice of an appropriate 

material and shape, as in a working system the 

information differential must be zero along all 

paths.  

 

Fig. 9 

 

As we’ll see, different shapes and materials will 

respond differently. A common approach would 

be to choose parameter passing. Parameter 

passing, as already exemplified, will cause all the 

intermediate functions f2 … fn-1 to “break” in 

their interface and implementation, so that 

information K can get through, as shown in fig 

10 (where K is in gray, as it’s no longer 

unbalanced).  
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Fig. 10 

This is the software equivalent of structural 

failure, where intermediate layers are now 

tainted by information they have no use for. 

 

A first-cut quantitative definition of 

information differential 

Although I’m wary of proposing quantitative 

models too early, it seems reasonable at this 

stage to define the information differential ∆K 

between f1 and fn as a vector of magnitude K and 

direction f1 → fn. This, however, requires that we 

define the magnitude of information K and a 

notion of distance for the artifact space (so that 

it could be properly characterized as a metric 

space). While it’s too early for the latter, 

quantifying the magnitude of K is already within 

reach. The only real challenge is to formulate a 

robust definition under (possibly tricky) code 

transformations.  

Here the method is extremely important, as 

within the perspective of the Physics of Software 

we want to quantify notions in the artifact 

space by observing what happens to the 

artifacts, unlike many metrics that tend to 

define and quantify notions that are easy to 

measure but are not direct mappings of 

observable phenomena. 

Within the methodological framework of the 

representational theory of measurement [4], we 

should start with an understanding of the 

empirical structure we want to quantify, and of 

the relations that must hold within that 

empirical structure, and then define our 

measurement in a way that preserves the 

relations in the empirical relational system. 

Now, considering the simple case of parameter 

passing, empirically the magnitude of K should 

be proportional to the number of individual 

fractures caused by K. Therefore, adding more 

knowledge would increase K in direct 

proportion, which seems consistent with the 

empirical experience. 

However, if the fracture is not individual (as 

when we lump together individual values in a 

larger value using an algebraic data type) the 

magnitude of K should not change, even though 

we have only one fracture.  

Still, when the unit of knowledge required by fn 

is indeed composite in nature (for instance an 

array of integers that will be used uniformly, e.g. 

to calculate an average) the contribution to the 

magnitude of K must be unitary, as empirically it 

is rather obvious that the information 
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differential won’t change if we make the array 

bigger (case in point: if we already pass the 

array, ∆K is zero and will stay zero if we increase 

the size of the array). 

However, if we try to play the system and pass 

(e.g.) two unrelated integers as a single array, 

the magnitude of K should be the same as when 

two independent values are passed. 

With that empirical relational system in mind, 

it’s rather obvious that: 

- The magnitude of K has nothing to do 

with the amount of bytes transferred at 

run-time from f1 to fn. 

 

- The magnitude of K depends on the 

usage of K within fn (uniform or not). 

Conscious that I’m still introducing more notions 

to be formally defined, I can still provide the 

following first-cut definition of information 

differential: 

 

Definition 1: an information particle4 known to 

f1, needed by fn, and having distinct identity 

within fn is called an unbalanced particle 

between f1 and fn. 

 

Definition 2: the magnitude of the information 

differential ∆K between f1 and fn is the 

cardinality of the set of unbalanced particles 

between f1 and fn. 

 

                                                           
4 I haven’t introduced this term formally yet. Informally, 
in this context you can think of it as a value you can pass.  

The notion of identity in the artifact space will 

be defined in a subsequent paper. Informally, 

you can think of an information particle having 

identity within a context if it has a distinct name 

within that context. Composite distinct names 

like a[0] are still distinct names. This accounts for 

non-uniform usage of values passed within 

arrays. 

Note that this definition accounts – using the 

informal terminology adopted in the previous 

paragraphs – for both individual, single-

parameter fractures and fractures made 

“larger” by adding fields / dimensions to a single 

type.  

In fact, if we consider the case where 

information K is being transferred from f1 to fn as 

a set of parameters P1 … Pm, the following must 

hold, independently of the number and type of 

the parameters: 

 

Equation 1:  

∑|𝑈(𝑃i)| = 𝐾

𝑚

𝑖=0

 

 

Where 𝑈(𝑃i) is the set of unbalanced particles 

carried by 𝑃i. 

 

 



Compression and Compressive Strength 

When a stack of bricks break top to bottom, it’s 

usually due to a compressive force being applied 

(fig. 11) until the compressive strength of the 

material is reached (see also fig. 5 again for a 

real-world example). 

 

 

Fig. 11 

This is reminiscent of what happens to artifacts 

under an information differential, when the 

shape is vertical stacking with parameter 

passing.  

That, of course, is not the only physical 

phenomenon that is known to cause fractures 

within a material. For instance, a dielectric will 

fail (and fracture) once the difference of 

electrical potential applied gets above its 

dielectric strength. 

                                                           
5 It is worth highlighting that the choice of compression 
and compressive strength is meant to provide an 
immediate, intuitive grasp. The underlying notion of 
information differential does not need to be grounded in 
physical analogies.  

While these parallels might be seen as random 

metaphors, it pays to understand that within 

physics and engineering there is a well-

developed theory of equivalence between 

mechanical, electrical, and other energy 

domains (see for instance [5]) dating back to 

Maxwell. Within that theory, the mechanical 

equivalent for voltage is a force, and in this 

perspective choosing one analogy or the other is 

mostly a matter of convenience and 

communication. I think the mechanical analogy 

is easier for people to grasp intuitively, and 

therefore I’ll stick to that in what follows. 

By extending the analogy to the information 

(artifact) space, we can consider information 

differential as a force. When there is an 

information differential ∆K between f1 and fn, all 

intermediate function[s] f2 … fn-1 will be subject 

to a form of compression (with magnitude ∆K). 

When intermediate functions break, we can 

further extend the analogy and conclude that 

we have reached their compressive strength5. 

 

Parameter Passing reconsidered 

As stated above, when the only shape available 

is one based on function calls and parameter 

passing, a form of compression is applied to the 

intermediate functions / layers / modules (see 

also fig. 10 again) under information differential. 

While this is too an early stage to quantitatively 

characterize the compressive strength of 

software materials6, it is easy to qualitatively 

conclude that materials and shapes based solely 

6 A first step toward a model based on an ordinal scale is 
introduced at the end of this paper. 
 



on function calls and explicit parameter passing 

have zero (or no) compressive strength, as any 

magnitude of compression will cause a fracture. 

Again, from a scientific perspective this should 

not be construed as a form of blind criticism. 

Yes, explicit parameter passing, which at the 

time in which I’m writing these notes is being 

idealized to the perfect way to transfer 

information, is evidently not perfect. That does 

not mean it does not have other benefits; for 

instance, it is a very explicit style, which in the 

physics of software can be formulated as a 

symmetry between R/R entanglement in the run-

time space and in the artifact space. However, 

pretending that there is no issue with 

compressive strength would be ignoring reality. 

As an aside: this issue has little to do with the 

common (at least at the time I’m writing these 

notes – hopefully this too shall pass) debate on 

functions vs. objects. Objects + message passing 

would suffer the same consequences if subject 

to the same constraints, that is, no side effects, 

no global state, explicit message passing. 

 

Solutions with traditional functional materials 

The issues described above are, of course, well 

known in the professional programming 

community. They’re not formulated in terms of 

information differential or compressive 

strength, and are probably not commonly 

discussed by “evangelists”7, but this is more a 

sign of the times than a sign of irrelevance. 

Hints to the problem and to possible solutions 

appear in literature, for instance in Real World 

                                                           
7 It’s hard to say if the peak of unprofessionalism in 
computing is reached when we talk about evangelists and 
prophets or ninjas and rock stars. 

Haskell [6], chapter 10 and 18. Again a sign of the 

times is that these issues tend to be discussed in 

social forums more than in books or formal 

papers. Examples from stackoverflow and reddit 

discussions are in [7], [8], [9], which also discuss 

a common solution: monads and monad 

transformers. The same approach is also briefly 

discussed in [10] under “Relaxed Layers – 

Monad Transformers”. 

In short, readers familiar with FP have already 

recognized the opportunity to save the 

intermediate layers from forwarding 

parameters by moving from functional 

composition to monadic composition. A 

common way to send information “at a 

distance” is through the Reader monad, a.k.a. 

the Environment monad. 

In practice, going back to the original example of 

parsing a file, a single monad won’t help much 

as we have to deal with a number of issues while 

parsing: 

- Optional results in case of failure. 

- Variable-length structures require that 

we keep track of how much data we have 

already parsed. 

- Diagnostics must be produced in case of 

errors. 

- Etc. 

A relatively common approach therefore relies 

on stacking monad transformers, as opposed to 

creating a non-reusable uber-monad. Either 

way, function composition and parameter 

passing have to be replaced with a different 

material / shape, with higher compressive 



strength. This, of course, may have other 

consequences, as much of the “simplicity” of 

function calls and explicit parameter passing is 

lost. 

 

Solutions with non-functional materials 

Faced with the same problem, but freed from 

the limitations (and of course devoid of the 

benefits) of referential transparency, the OO 

community has explored, over time, different 

alternatives, mostly based on the notion of a 

shared state, not necessarily mutable, but 

largely implicit. 

On a short distance, the class itself acts as an 

implicit context. All member functions implicitly 

share all the data members. Note that I’m saying 

“short distance” here on the assumption that 

classes are kept small. In fact, it would be 

interesting to analyze the common emergence 

of large classes in the average codebase as a 

relatively cheap way to obtain some 

compressive strength8.   

Of course, the same notion applies to nested 

functions, sharing the outer function[s] context. 

On large distances, a number of solutions have 

been adopted over time: 

- Dependency injection via IoC containers. 

- Service Locators, Brokers, Blackboards. 

In simple cases, just a Singleton. 

- Contextual data as Thread Local Storage. 

- Etc. 

                                                           
8 As opposed to the common approach of chastising 
programmers who create large artifacts, understanding 
why they do it would allow to create better materials. I 
too am guilty of simply dismissing long function / classes 
as “bad practices” or “laziness”, perhaps too quickly. 

Each of these solutions has been abused, to the 

point where – in the classical swing of 

underdeveloped disciplines – they have been 

labeled as evil, anti-patterns, etc. 

 

Language-level solutions 

Solutions to the issue of compressive strength 

have been sought both within and outside 

mainstream paradigms. Both Scala and Haskell 

(the latter through a type system extension) 

support implicit parameters. Roughly speaking, 

in both cases functions signature will be 

fractured to preserve static type checking, but 

functions body won’t need changes to 

propagate parameters downstream.  

To make an analogy with fig. 7, this could be 

represented as in fig. 12. 

 

Fig. 12 



Interestingly, this approach is often frown upon 

and labelled as a dangerous hack, without any 

serious attempt to identify contexts in which it 

could be useful or ways to make it work better. 

Dynamic scoping is an old form of scoping 

resolution, rarely adopted in modern languages, 

but relevant in this context.  

Unlike implicit parameters, dynamically scoped 

variables do not appear in the function 

signature.  

Therefore, strictly speaking, dynamic scoping 

offers higher compressive strength than 

statically scoped implicit parameters (the 

signature won’t “crack” when a new parameter 

is required). As usual, they have other 

consequences, both in terms of human 

understanding and in the practical impossibility 

of static checking.  

Interestingly, while looking for a good 

bibliographical entry on dynamic scoping, an old 

paper [11] from Guy Steele and Gerald Sussman 

resurfaced in my library. There, the authors 

explain the practical usage of dynamic scoping in 

a context quite similar to the one I’ve been 

describing above (see page 43, “dynamic 

scoping as a state-decomposition discipline”).  

This reinforces the idea that lacking a language- 

and paradigm-independent characterization 

and analysis of compressive strength, 

generations are bound to rediscover the issues, 

try solutions, stumble into problems, swing back 

to overly restrictive and oversimplified styles, 

and so forth, with little global advancement in 

the discipline. 

Among non-mainstream paradigms, both 

Adaptive Programming (see for instance [12], 

Chapter 10) and Context-Oriented Programming 

[13] have tried to deal with the issue.  

In Context-Oriented programming, the problem 

is often reframed as function selection, so 

instead of passing an endianness parameter we 

reframe as choosing between ParseIntBigEndian 

vs. ParseIntLittleEndian based on contextual 

information.  Adaptive Programming frames the 

problem as a transport problem, and somewhat 

subsumes it within structure-shy navigation.  

Both have probably something to teach, and 

indeed the separation into “paradigms” (which 

according to Kuhn brings an issue of 

incommensurability) is probably less productive 

than a more engineering-like separation into 

materials, with much less intellectual and 

emotional attachment and more natural 

compatibility. 

 

And yet, bridges fell 

It is interesting to get back to construction to 

gain some perspective. 

Stone was (intuitively) understood as having 

poor tensile strength and a different structure 

was sought (roman arch). More ambitious 

artifacts, like wider bridges, were then possible. 

However, over time bridges fell; for a long list of 

known cases of failures in the history of bridges 

see [14]. Still, the bridge was not declared to be 

an anti-pattern, neither were the arch nor stone 

labeled as evil. We gradually understood 

limitations, formalized forces, improved 

constructions techniques, explored new shapes 

and new materials. 

As materials with high tensile strength emerged 

(steel, shaped in beams and cables) new 

opportunities arose to build different bridges. 

This did not replace arches entirely; we 

understand materials well enough to appreciate 



their difference. Stone, for instance, is readily 

available in places where bringing steel would be 

impractical. 

Perhaps surprisingly, even with new materials 

and shapes bridges kept falling (see [14] again 

for many cases where steel was adopted), due 

to wrong calculations, improper construction, 

unexpected events. Failures are openly 

discussed and seen as opportunity for 

improvements.  

Modern bridges tend to have complex shapes 

(“architectures”). Their complex shape might be 

inspired by creativity and to some degree by 

aesthetics, but is supported and justified by 

structural engineering. We can easily contrast 

this with the recurring obsession with structural 

simplicity in computing, where many “experts” 

are basically suggesting that using a beam in 

every single case is ok (“just pass parameters”), 

mostly as a reaction to having seen the like of a 

suspension bridge adopted without any real 

need / benefit. A clear sign of the immaturity of 

our field is the lack of a good theory supporting 

informed decisions; instead we’re still trapped in 

a pre-scientific world of “principles” sprinkled 

with the occasional dogma. 

 

Going deeper 

Just like IoC containers have been abused where 

passing a parameter would have worked just 

fine, monads and monad transformers will be 

abused, it’s just a matter of time. See [7] again 

for an increasing awareness of these issue in the 

Haskell community. Implicit parameters have 

already been removed from the table in many 

conversations, dismissed as “evil”. 

It is my hope that moving away from the 

commonplace advocacy of languages and 

paradigms, and toward a deeper understanding 

of software forces, materials and shapes will 

provide a long-needed antidote to the pop-

culture cycle of hype and despair we keep 

repeating. 

Recognizing the issue of compression and 

compressive strength is just one step. A precise 

model of how monads, monad transformers, IoC 

containers, service locators, etc. are altering the 

force field would offer a much better 

opportunity for discussion and adoption, free 

from the oversimplification of “just pass 

parameters” and from the equally blind 

oversimplification of “xyz is an evil anti-pattern”, 

hopefully providing the professional 

programmer with more objective foundations 

and enabling more informed design decisions. 

The relationship between compressive strength 

and other properties is also worth investigating. 

Providing an implicit context can easily increase 

the coefficient of friction as defined in [15], 

making code harder to move. 

Over time, thinking in terms of materials and 

forces could also help to conceive new solutions, 

either by borrowing from niche paradigms or by 

engineering a material / shape on purpose. 

 

Quantitative model of compressive strength 

While I consider a good qualitative model 

important, a quantitative model is usually more 

immediately useful, provided that we 

understand what we’re trying to quantify (the 

empirical structure, see [4] again) well enough.  

We also need to remember that quantification 

does not necessarily mean assigning numbers; in 

fact, there are many practical cases where only 

an ordinal scale can be provided (like “hazard 



level”). In fact, given the discrete nature of 

software, it’s unlikely that we’ll ever be able to 

have an interval or ratio scale for every quantity. 

Coming up with an ordinal scale is also a way to 

test our collective understanding and 

agreement. We can start with a set (not yet a 

measurement scale) describing the reactions of 

intermediate layers (f2 … fn-1) subject to 

information differential: 

{ nothing breaks, only interface breaks, only 

implementation breaks, both interface and 

implementation breaks } 

To be thorough, we should also consider the 

case where we do not create a new fracture, but 

we make an existing fracture “larger” by adding 

fields / dimensions to an existing parameter. 

In practice, at this stage I haven’t found any 

evidence of a case where the implementation 

breaks under information differential, but the 

interface stays the same. It’s even hard to 

conceive how that configuration may work.  

Along the same lines, when we make existing 

fractures “larger”, there is no syntactic change 

to either the interface or implementation. It’s a 

change to a type mentioned in the interface. 

That would suggest that we revise the set above 

as: 

{ nothing breaks, only parameter types break, 

only interface breaks, both interface and 

implementation breaks } 

Now the task of coming up with an ordinal scale 

is reduced to that of finding a total order in such 

set, so that empirically we consider α worse than 

β if α < β, and then we can call that ordinal scale 

“compressive strength”. This would get more 

complicated if we had kept “only 

implementation breaks” in such set, but based 

on the above, I suppose we would all empirically 

agree that the order, if it indeed exists, must be 

a linearization of the poset in fig. 13: 

 

Fig. 13 

That is, it’s rather obvious that breaking nothing 

is better than breaking a little and that breaking 

all is worse than breaking a little. It’s not 

necessarily obvious, and a possible cause of 

disagreement, whether or not creating a large 

fracture is better than breaking the interface by 

creating another explicit fracture (parameter). 

At this stage, I am inclined to resolve the issue 

by making it, unfortunately, more complicated, 

bringing in the notion of R/R entanglement in 

the run-time space. Since this work would only 

make sense once a circuit model of information 

differential has been worked out (see next 

paragraph), which could indeed add more cases 

to the set anyway, I will leave the issue open in 

the present draft. 
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Further developments 

- You may recognize a similar, symmetrical issue 

when returning results (up) from functions, as 

opposed to passing parameters (down). Here 

again, it may happen that intermediate layers 

have to propagate some results back to the top-

level functions, results that they don’t actually 

need but have to be aware of. This is particularly 

common for detailed diagnostics. Much of the 

same reasoning as with parameters applies. For 

instance, exceptions were initially seen as a 

mechanism to increase compressive strength, 

and partially because of poor choices by 

language designers, they failed in many 

languages (see the large number of try/finally in 

intermediate layers) and are now discredited in 

favor of, unsurprisingly, monads.  

A quantification of the information differential 

can be provided here as well, reversing the role 

of f1 and fn while quantifying magnitude, but 

keeping the direction as f1 → fn. This works well 

until we consider mutable in/out parameters, 

which should be counted only once. That’s one 

of the reason why this is still considered a first-

cut quantitative model. 

- This paper has considered only the simplest 

context, where we have an information 

differential between two single points (f1 and fn). 

As in electrical engineering, it is however 

important to characterize more complex circuits 

(call graphs). This step (ideally completed 

together with a study of return values) should 

also provide enough details to understand 

whether or not the parallel with compression 

holds, or if it’s better to move past this stage, 

adopt only “information differential” as a term, 

and introduce a new term for what I have now 

called “compressive strength”. 

- The definition of information differential relies 

on terms like information particle and identity in 

the artifact space, which should be formalized as 

well. It would also be worth explaining in more 

details (with examples) why the definition is 

based on the callee context, not the caller’s. This 

would also be a chance to explain how some 

“syntactic sugar” that we tend to consider a 

mere convenience (variable number of 

parameters) ends up revealing the actual 

information differential (usually 1, as variable 

arguments are normally treated uniformly) 

compared with alternative syntax based on 

overloading and fixed parameter set. 

- It has been proposed that this paper is useless 

as I do not yet provide either a quantification of 

compressive strength or a precise 

characterization of all the aforementioned 

solutions (IoCs, Monads, etc.) in term of 

compressive strength. This kind of criticism is 

again a sign of immaturity of our field: while in 

more established disciplines there are entire 

books devoted to a single property for a small 

family of materials (like “elasticity in rubber”), 

we expect a seminal paper to have everything 

figured out and quantified in the space of a few 

pages. In early stages of theory formation, I 

consider qualitative characterization of 

phenomena a useful and important step toward 

a quantitative model. We have seen many 

examples where scholars have proposed more 

or less sophisticated equations (just think of the 

literature on coupling and cohesion) that 

nobody is using in practice, relying instead on 

qualitative, intuitive understanding. A complete 

characterization of solutions in terms of 

compressive strength alone would be useless, 

because higher compressive strength does not 

automatically equate with “better”. Other 

balancing effects need to be formalized, like 



notions that we only appreciate informally (like 

delocalized plans) plus other contributing 

factors like reentrancy / thread safety, not to 

mention the effect of distance9, and until the 

impact of those notions is clearly understood 

from the qualitative perspective I will restrain 

from systematic comparison of alternative 

solutions. 

-  Two reviewers asked me if we also have a form 

of tension in software. The short answer is yes, 

there is a force that I’m currently inclined to 

classify as tension, but would be out of scope 

here. 

 

Feedback 

Constructive feedback is welcome. For short 

messages consider twitter (@CarloPescio) but 

for a more reasoned conversation I’ve set up a 

message board, and there is a specific topic for 

this paper, so consider posting there. Thanks. 
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