
Compressive Strength and Parameter Passing

in the Physics of Software

Draft version 1.5

Updates from version 1.4 are in green. Some paragraphs have been readjusted in a different narrative sequence.

© Carlo Pescio, 2016

Abstract

From the Physics of Software perspective, software is a material, reacting to forces according to its own

properties and shape. A shape based exclusively on function (or method) calls and parameter (or

message) passing is characterized by weak compressive strength, manifested by well-known design and

maintenance issues. Known solutions exist within both the functional and object oriented paradigm,

although their relationship with compressive strength has not been well understood so far. Some of

those solutions have been abused where no compressive strength was required, and therefore

prematurely labelled as “anti-patterns”. A more precise understanding of forces will lead to more

informed design decisions and avoid further pendulum swings.

Introduction

One of the goals of my work on the Physics of

Software [1] is to gradually formalize a model of

software as a material, where non-functional

properties are defined as reactions to stimuli, or

forces.

Today, the idea that software constructs may

exhibit anything like compressive strength may

seem far-fetched, as we normally consider

software immaterial.

However, just like we choose and shape physical

materials to respond best to contextual forces,

so we do for software. We just don’t know the

forces well enough to recognize and name them

properly.

I’ll start by illustrating how framing properties

of physical materials as reactions to forces

provides guidance in their adoption and helps

shape them properly, and how this

understanding suggests different shapes when

different materials are adopted. I’ll then move

to consider a known phenomenon in software

evolution under the perspective of the physics

of software, uncovering both a force and a

property defined as reaction to such force.

Beams and Arches

The simplest structure that can bridge two

points is a beam, as represented in fig.1. The

beam is loaded with its own weight, plus any

additional weight (structures, vehicles, water)

that it’s being designed to carry.

Fig. 1

That type of loading results in the beam bending,

as represented (greatly exaggerated for

emphasis) in fig. 2.

Fig. 2

Bending, in turn, exerts compression on the

material on top of the beam and tension on the

material on the bottom (fig. 3).

Fig. 3

Construction materials easily available to early

civilizations (stone, marble, wood) tend to have

good compressive strength (ability to sustain

compression) and poor tensile strength (ability

to sustain tension). With reference to fig. 3, they

would “break on the bottom”, where tensile

strength is required. Therefore, a bridging

structure shaped as a simple beam was not a

good fit for the material, and when adopted

required a narrow distance between columns.

The roman arch (fig. 4) was conceived exactly to

transfer most of the load in form of

compression. A change in shape was therefore

required due to the low tensile strength of the

adopted materials.

Fig. 4

When materials with high tensile strength

(mostly steel) became available, the beam

(especially the I-beam) in turn became a better

fit; other shapes, like suspension bridges, also

became more popular.

Of course, given enough pressure, any material

will fail. Materials will fail under compression in

different ways; some will fracture from top to

bottom as the timber block under test in fig. 5:

Fig. 5

It’s ok to fail

Before we move to software, I think it’s

important to reflect on the objective and

dispassionate perspective of science. Having low

tensile strength is not considered a shame; in

fact, marble is still routinely used in many roles

where tensile strength is not required.

Conversely, there are also no attempts to

construe tensile strength as irrelevant or

overshadowed by other “more important”

properties. Instead, we recognize reality and

learn to shape our material so that compression

is carried more than tension when needed. Of

course, materials may have other properties

more desirable, in a specific context, than tensile

strength.

1 Similar file formats are quite common in the industry.
Images, GPS / fitness data, lab measurements, etc. are
often structured in files with a similar information
architecture.

Parameter Passing

A good theory should be informed by practice,

observation and experiments, so let’s start from

a realistic example – parsing a “complex” file

format.

Let’s say that we need to parse a binary file

organized into a header, containing a number of

meta-data about the file itself, followed by the

actual contents, organized in a number of

sections having variable length, possibly with

nested sub-sections, down to domain-specific

values (coordinates, or colors, or quantities)

mapped to the usual strings, integers and

floats1.

For sake of simplicity, we can simply ignore that

we’re reading a file and consider the similar

problem of parsing data from an in-memory

array, removing the need for I/O and mapping

more directly into a functional world.

It would seem reasonable to organize the parser

using a functional decomposition that mirrors

the information structure / grammar of the data

being parsed (fig. 6).

That’s relatively straightforward, until you

realize that one of the parameters in the

headers is describing the binary format of

integers in the contents section – big endian or

little endian2.

2 I am setting this as a design problem, as all this
information is potentially available upfront. In practice, in
a number of real-world cases this would manifest as a
maintenance problem, as information is gradually
discovered or changes are required due to new
requirements. Incremental discovery only amplifies the
issues discussed in what follows.

Fig. 6

That can be easily solved by passing that

information as a parameter, from the “parse

file” function (which got it from “parse header”)

down to the “parse contents” and further down

to all the “parse int” occurrences.

Of course, by doing so we need to change the

entire chain of calls from the top level – where

information is known – to the bottom level –

where information is needed. We need to

break the existing interface of every involved

function. We need to crack every function open

and change its implementation to forward the

new parameter down the chain.

All the intermediate functions are “fractured” by

this change, top to bottom, just like the timber

log in fig. 5, without any local need or benefit –

those functions are concerned with parsing

complex structures and don’t need to know the

integer format.

The fracturing, of course, does not stop there. As

you progress, you learn that strings can be

marked as UTF-8 or as ANSI in the header. You

need to pass that information down. Another

crack is opening. Colors might be represented as

RGB, ARGB, etc. Another fracture.

At that point, many programmers will move

from a number of small fractures to a single

large fracture, passing an algebraic data type

that may more or less correspond to the entire

header, so that individual functions can “pick”

the parts they need. At least this will prevent

further fractures: we’ll simply make the single

fracture larger on demand, by adding fields to

that single type as required.

This is ok syntactically - semantically we still

have a large chunk of information going through

a number of functions just to be passed

downstream. Depending on the organization of

the different sections and sub-sections, the

richness of the header, etc., that lump of

information will probably lack cohesion or, in

the more precise formulation within the Physics

of Software, fields won’t be Read/Read

entangled [2], [3] either in the artifact space and

Parse file

Parse header

Parse contents

Parse section 1

Parse sub-section 1.1

Parse speed

Parse int

Parse section n

Parse sub-section n.1

Parse coord

Parse int

in the run-time space, and therefore should not

be kept together if we aim for locality of action3;

however, we may still opt to do so because it

looks like the most convenient option. Worst

case: we pass the entire set of configuration

data down to “parse int” and it will pick the only

parameter that’s actually needed (endianness).

While the example above is built around factual

knowledge (data) needed by a bottom layer and

known only at the top layer, an identical

scenario would present itself if the knowledge

was operational (functions). As you discover

new operational knowledge to be passed

downstream, the intermediate layer will

fracture just like when passing data.

There are, of course, known solutions to this

problem, but not within function composition

and parameter passing. Composition, often

touted as the quintessential tool in the

functional arsenal, does not help at all here. The

only place where we know enough to

“compose” the right function is the top level; the

place where we may want to use the

“composed” function is the bottom level. “Parse

int” was a direct function call in the initial

implementation, so we still have to fracture all

the functions from top to bottom to pass it as a

parameter.

In the contemporary narrative of computing,

this is where we normally split between the

apologetics – trying to prove that parameter

passing is still the best thing on earth – and the

harsh critics, quick to define parameter passing

as a dangerous anti-pattern.

3 The shortcomings of passing a large type are probably
more self-evident if you consider some of the layers as
modules that have to carry downstream data they have
no use for – and unstable data inasmuch as we keep
adding fields.

The perspective of science is different, and in

itself quite simple: if indeed we are cracking that

stack of functions top to bottom, there must be

some force at play, and we should identify the

force, and then characterize our materials

according to their reaction to that force.

Information differential

Moving away from the concrete example above,

we can now consider a general case where a

function f1 owns some information K that is

required by a function fn, which is indirectly

called by f1 through a series of function calls to

f2 … fn-1, where f2 … fn-1 have no use for K.

This can be represented as in fig. 7:

Fig. 7

f
1

f
2

…

f
n

K

An alternative representation, more aligned

with the following reasoning (albeit less aligned

with traditional representations of software

artifacts) is provided in fig. 8, where function f1

is characterized by an “excess” of information K,

fn by a lack of information K, while f2 … fn-1 would

ideally be oblivious to / isolated from K.

Fig. 8

The unbalance (differential) in information

contents is creating a force of attraction (see fig.

9) between f1 and fn, even though they are

“distant” in the logical and physical

decomposition of our code. That force has to be

balanced through the choice of an appropriate

material and shape, as in a working system the

information differential must be zero along all

paths.

Fig. 9

As we’ll see, different shapes and materials will

respond differently. A common approach would

be to choose parameter passing. Parameter

passing, as already exemplified, will cause all the

intermediate functions f2 … fn-1 to “break” in

their interface and implementation, so that

information K can get through, as shown in fig

10 (where K is in gray, as it’s no longer

unbalanced).

f
1

f
2

…

f
n

K+

K-

f
1

f
2

…

f
n

K+

K-

Fig. 10

This is the software equivalent of structural

failure, where intermediate layers are now

tainted by information they have no use for.

A first-cut quantitative definition of

information differential

Although I’m wary of proposing quantitative

models too early, it seems reasonable at this

stage to define the information differential ∆K

between f1 and fn as a vector of magnitude K and

direction f1 → fn. This, however, requires that we

define the magnitude of information K and a

notion of distance for the artifact space (so that

it could be properly characterized as a metric

space). While it’s too early for the latter,

quantifying the magnitude of K is already within

reach. The only real challenge is to formulate a

robust definition under (possibly tricky) code

transformations.

Here the method is extremely important, as

within the perspective of the Physics of Software

we want to quantify notions in the artifact

space by observing what happens to the

artifacts, unlike many metrics that tend to

define and quantify notions that are easy to

measure but are not direct mappings of

observable phenomena.

Within the methodological framework of the

representational theory of measurement [4], we

should start with an understanding of the

empirical structure we want to quantify, and of

the relations that must hold within that

empirical structure, and then define our

measurement in a way that preserves the

relations in the empirical relational system.

Now, considering the simple case of parameter

passing, empirically the magnitude of K should

be proportional to the number of individual

fractures caused by K. Therefore, adding more

knowledge would increase K in direct

proportion, which seems consistent with the

empirical experience.

However, if the fracture is not individual (as

when we lump together individual values in a

larger value using an algebraic data type) the

magnitude of K should not change, even though

we have only one fracture.

Still, when the unit of knowledge required by fn

is indeed composite in nature (for instance an

array of integers that will be used uniformly, e.g.

to calculate an average) the contribution to the

magnitude of K must be unitary, as empirically it

is rather obvious that the information

f
1

f
2

…

f
n

K

K

K

K

differential won’t change if we make the array

bigger (case in point: if we already pass the

array, ∆K is zero and will stay zero if we increase

the size of the array).

However, if we try to play the system and pass

(e.g.) two unrelated integers as a single array,

the magnitude of K should be the same as when

two independent values are passed.

With that empirical relational system in mind,

it’s rather obvious that:

- The magnitude of K has nothing to do

with the amount of bytes transferred at

run-time from f1 to fn.

- The magnitude of K depends on the

usage of K within fn (uniform or not).

Conscious that I’m still introducing more notions

to be formally defined, I can still provide the

following first-cut definition of information

differential:

Definition 1: an information particle4 known to

f1, needed by fn, and having distinct identity

within fn is called an unbalanced particle

between f1 and fn.

Definition 2: the magnitude of the information

differential ∆K between f1 and fn is the

cardinality of the set of unbalanced particles

between f1 and fn.

4 I haven’t introduced this term formally yet. Informally,
in this context you can think of it as a value you can pass.

The notion of identity in the artifact space will

be defined in a subsequent paper. Informally,

you can think of an information particle having

identity within a context if it has a distinct name

within that context. Composite distinct names

like a[0] are still distinct names. This accounts for

non-uniform usage of values passed within

arrays.

Note that this definition accounts – using the

informal terminology adopted in the previous

paragraphs – for both individual, single-

parameter fractures and fractures made

“larger” by adding fields / dimensions to a single

type.

In fact, if we consider the case where

information K is being transferred from f1 to fn as

a set of parameters P1 … Pm, the following must

hold, independently of the number and type of

the parameters:

Equation 1:

∑|𝑈(𝑃i)| = 𝐾

𝑚

𝑖=0

Where 𝑈(𝑃i) is the set of unbalanced particles

carried by 𝑃i.

Compression and Compressive Strength

When a stack of bricks break top to bottom, it’s

usually due to a compressive force being applied

(fig. 11) until the compressive strength of the

material is reached (see also fig. 5 again for a

real-world example).

Fig. 11

This is reminiscent of what happens to artifacts

under an information differential, when the

shape is vertical stacking with parameter

passing.

That, of course, is not the only physical

phenomenon that is known to cause fractures

within a material. For instance, a dielectric will

fail (and fracture) once the difference of

electrical potential applied gets above its

dielectric strength.

5 It is worth highlighting that the choice of compression
and compressive strength is meant to provide an
immediate, intuitive grasp. The underlying notion of
information differential does not need to be grounded in
physical analogies.

While these parallels might be seen as random

metaphors, it pays to understand that within

physics and engineering there is a well-

developed theory of equivalence between

mechanical, electrical, and other energy

domains (see for instance [5]) dating back to

Maxwell. Within that theory, the mechanical

equivalent for voltage is a force, and in this

perspective choosing one analogy or the other is

mostly a matter of convenience and

communication. I think the mechanical analogy

is easier for people to grasp intuitively, and

therefore I’ll stick to that in what follows.

By extending the analogy to the information

(artifact) space, we can consider information

differential as a force. When there is an

information differential ∆K between f1 and fn, all

intermediate function[s] f2 … fn-1 will be subject

to a form of compression (with magnitude ∆K).

When intermediate functions break, we can

further extend the analogy and conclude that

we have reached their compressive strength5.

Parameter Passing reconsidered

As stated above, when the only shape available

is one based on function calls and parameter

passing, a form of compression is applied to the

intermediate functions / layers / modules (see

also fig. 10 again) under information differential.

While this is too an early stage to quantitatively

characterize the compressive strength of

software materials6, it is easy to qualitatively

conclude that materials and shapes based solely

6 A first step toward a model based on an ordinal scale is
introduced at the end of this paper.

on function calls and explicit parameter passing

have zero (or no) compressive strength, as any

magnitude of compression will cause a fracture.

Again, from a scientific perspective this should

not be construed as a form of blind criticism.

Yes, explicit parameter passing, which at the

time in which I’m writing these notes is being

idealized to the perfect way to transfer

information, is evidently not perfect. That does

not mean it does not have other benefits; for

instance, it is a very explicit style, which in the

physics of software can be formulated as a

symmetry between R/R entanglement in the run-

time space and in the artifact space. However,

pretending that there is no issue with

compressive strength would be ignoring reality.

As an aside: this issue has little to do with the

common (at least at the time I’m writing these

notes – hopefully this too shall pass) debate on

functions vs. objects. Objects + message passing

would suffer the same consequences if subject

to the same constraints, that is, no side effects,

no global state, explicit message passing.

Solutions with traditional functional materials

The issues described above are, of course, well

known in the professional programming

community. They’re not formulated in terms of

information differential or compressive

strength, and are probably not commonly

discussed by “evangelists”7, but this is more a

sign of the times than a sign of irrelevance.

Hints to the problem and to possible solutions

appear in literature, for instance in Real World

7 It’s hard to say if the peak of unprofessionalism in
computing is reached when we talk about evangelists and
prophets or ninjas and rock stars.

Haskell [6], chapter 10 and 18. Again a sign of the

times is that these issues tend to be discussed in

social forums more than in books or formal

papers. Examples from stackoverflow and reddit

discussions are in [7], [8], [9], which also discuss

a common solution: monads and monad

transformers. The same approach is also briefly

discussed in [10] under “Relaxed Layers –

Monad Transformers”.

In short, readers familiar with FP have already

recognized the opportunity to save the

intermediate layers from forwarding

parameters by moving from functional

composition to monadic composition. A

common way to send information “at a

distance” is through the Reader monad, a.k.a.

the Environment monad.

In practice, going back to the original example of

parsing a file, a single monad won’t help much

as we have to deal with a number of issues while

parsing:

- Optional results in case of failure.

- Variable-length structures require that

we keep track of how much data we have

already parsed.

- Diagnostics must be produced in case of

errors.

- Etc.

A relatively common approach therefore relies

on stacking monad transformers, as opposed to

creating a non-reusable uber-monad. Either

way, function composition and parameter

passing have to be replaced with a different

material / shape, with higher compressive

strength. This, of course, may have other

consequences, as much of the “simplicity” of

function calls and explicit parameter passing is

lost.

Solutions with non-functional materials

Faced with the same problem, but freed from

the limitations (and of course devoid of the

benefits) of referential transparency, the OO

community has explored, over time, different

alternatives, mostly based on the notion of a

shared state, not necessarily mutable, but

largely implicit.

On a short distance, the class itself acts as an

implicit context. All member functions implicitly

share all the data members. Note that I’m saying

“short distance” here on the assumption that

classes are kept small. In fact, it would be

interesting to analyze the common emergence

of large classes in the average codebase as a

relatively cheap way to obtain some

compressive strength8.

Of course, the same notion applies to nested

functions, sharing the outer function[s] context.

On large distances, a number of solutions have

been adopted over time:

- Dependency injection via IoC containers.

- Service Locators, Brokers, Blackboards.

In simple cases, just a Singleton.

- Contextual data as Thread Local Storage.

- Etc.

8 As opposed to the common approach of chastising
programmers who create large artifacts, understanding
why they do it would allow to create better materials. I
too am guilty of simply dismissing long function / classes
as “bad practices” or “laziness”, perhaps too quickly.

Each of these solutions has been abused, to the

point where – in the classical swing of

underdeveloped disciplines – they have been

labeled as evil, anti-patterns, etc.

Language-level solutions

Solutions to the issue of compressive strength

have been sought both within and outside

mainstream paradigms. Both Scala and Haskell

(the latter through a type system extension)

support implicit parameters. Roughly speaking,

in both cases functions signature will be

fractured to preserve static type checking, but

functions body won’t need changes to

propagate parameters downstream.

To make an analogy with fig. 7, this could be

represented as in fig. 12.

Fig. 12

Interestingly, this approach is often frown upon

and labelled as a dangerous hack, without any

serious attempt to identify contexts in which it

could be useful or ways to make it work better.

Dynamic scoping is an old form of scoping

resolution, rarely adopted in modern languages,

but relevant in this context.

Unlike implicit parameters, dynamically scoped

variables do not appear in the function

signature.

Therefore, strictly speaking, dynamic scoping

offers higher compressive strength than

statically scoped implicit parameters (the

signature won’t “crack” when a new parameter

is required). As usual, they have other

consequences, both in terms of human

understanding and in the practical impossibility

of static checking.

Interestingly, while looking for a good

bibliographical entry on dynamic scoping, an old

paper [11] from Guy Steele and Gerald Sussman

resurfaced in my library. There, the authors

explain the practical usage of dynamic scoping in

a context quite similar to the one I’ve been

describing above (see page 43, “dynamic

scoping as a state-decomposition discipline”).

This reinforces the idea that lacking a language-

and paradigm-independent characterization

and analysis of compressive strength,

generations are bound to rediscover the issues,

try solutions, stumble into problems, swing back

to overly restrictive and oversimplified styles,

and so forth, with little global advancement in

the discipline.

Among non-mainstream paradigms, both

Adaptive Programming (see for instance [12],

Chapter 10) and Context-Oriented Programming

[13] have tried to deal with the issue.

In Context-Oriented programming, the problem

is often reframed as function selection, so

instead of passing an endianness parameter we

reframe as choosing between ParseIntBigEndian

vs. ParseIntLittleEndian based on contextual

information. Adaptive Programming frames the

problem as a transport problem, and somewhat

subsumes it within structure-shy navigation.

Both have probably something to teach, and

indeed the separation into “paradigms” (which

according to Kuhn brings an issue of

incommensurability) is probably less productive

than a more engineering-like separation into

materials, with much less intellectual and

emotional attachment and more natural

compatibility.

And yet, bridges fell

It is interesting to get back to construction to

gain some perspective.

Stone was (intuitively) understood as having

poor tensile strength and a different structure

was sought (roman arch). More ambitious

artifacts, like wider bridges, were then possible.

However, over time bridges fell; for a long list of

known cases of failures in the history of bridges

see [14]. Still, the bridge was not declared to be

an anti-pattern, neither were the arch nor stone

labeled as evil. We gradually understood

limitations, formalized forces, improved

constructions techniques, explored new shapes

and new materials.

As materials with high tensile strength emerged

(steel, shaped in beams and cables) new

opportunities arose to build different bridges.

This did not replace arches entirely; we

understand materials well enough to appreciate

their difference. Stone, for instance, is readily

available in places where bringing steel would be

impractical.

Perhaps surprisingly, even with new materials

and shapes bridges kept falling (see [14] again

for many cases where steel was adopted), due

to wrong calculations, improper construction,

unexpected events. Failures are openly

discussed and seen as opportunity for

improvements.

Modern bridges tend to have complex shapes

(“architectures”). Their complex shape might be

inspired by creativity and to some degree by

aesthetics, but is supported and justified by

structural engineering. We can easily contrast

this with the recurring obsession with structural

simplicity in computing, where many “experts”

are basically suggesting that using a beam in

every single case is ok (“just pass parameters”),

mostly as a reaction to having seen the like of a

suspension bridge adopted without any real

need / benefit. A clear sign of the immaturity of

our field is the lack of a good theory supporting

informed decisions; instead we’re still trapped in

a pre-scientific world of “principles” sprinkled

with the occasional dogma.

Going deeper

Just like IoC containers have been abused where

passing a parameter would have worked just

fine, monads and monad transformers will be

abused, it’s just a matter of time. See [7] again

for an increasing awareness of these issue in the

Haskell community. Implicit parameters have

already been removed from the table in many

conversations, dismissed as “evil”.

It is my hope that moving away from the

commonplace advocacy of languages and

paradigms, and toward a deeper understanding

of software forces, materials and shapes will

provide a long-needed antidote to the pop-

culture cycle of hype and despair we keep

repeating.

Recognizing the issue of compression and

compressive strength is just one step. A precise

model of how monads, monad transformers, IoC

containers, service locators, etc. are altering the

force field would offer a much better

opportunity for discussion and adoption, free

from the oversimplification of “just pass

parameters” and from the equally blind

oversimplification of “xyz is an evil anti-pattern”,

hopefully providing the professional

programmer with more objective foundations

and enabling more informed design decisions.

The relationship between compressive strength

and other properties is also worth investigating.

Providing an implicit context can easily increase

the coefficient of friction as defined in [15],

making code harder to move.

Over time, thinking in terms of materials and

forces could also help to conceive new solutions,

either by borrowing from niche paradigms or by

engineering a material / shape on purpose.

Quantitative model of compressive strength

While I consider a good qualitative model

important, a quantitative model is usually more

immediately useful, provided that we

understand what we’re trying to quantify (the

empirical structure, see [4] again) well enough.

We also need to remember that quantification

does not necessarily mean assigning numbers; in

fact, there are many practical cases where only

an ordinal scale can be provided (like “hazard

level”). In fact, given the discrete nature of

software, it’s unlikely that we’ll ever be able to

have an interval or ratio scale for every quantity.

Coming up with an ordinal scale is also a way to

test our collective understanding and

agreement. We can start with a set (not yet a

measurement scale) describing the reactions of

intermediate layers (f2 … fn-1) subject to

information differential:

{ nothing breaks, only interface breaks, only

implementation breaks, both interface and

implementation breaks }

To be thorough, we should also consider the

case where we do not create a new fracture, but

we make an existing fracture “larger” by adding

fields / dimensions to an existing parameter.

In practice, at this stage I haven’t found any

evidence of a case where the implementation

breaks under information differential, but the

interface stays the same. It’s even hard to

conceive how that configuration may work.

Along the same lines, when we make existing

fractures “larger”, there is no syntactic change

to either the interface or implementation. It’s a

change to a type mentioned in the interface.

That would suggest that we revise the set above

as:

{ nothing breaks, only parameter types break,

only interface breaks, both interface and

implementation breaks }

Now the task of coming up with an ordinal scale

is reduced to that of finding a total order in such

set, so that empirically we consider α worse than

β if α < β, and then we can call that ordinal scale

“compressive strength”. This would get more

complicated if we had kept “only

implementation breaks” in such set, but based

on the above, I suppose we would all empirically

agree that the order, if it indeed exists, must be

a linearization of the poset in fig. 13:

Fig. 13

That is, it’s rather obvious that breaking nothing

is better than breaking a little and that breaking

all is worse than breaking a little. It’s not

necessarily obvious, and a possible cause of

disagreement, whether or not creating a large

fracture is better than breaking the interface by

creating another explicit fracture (parameter).

At this stage, I am inclined to resolve the issue

by making it, unfortunately, more complicated,

bringing in the notion of R/R entanglement in

the run-time space. Since this work would only

make sense once a circuit model of information

differential has been worked out (see next

paragraph), which could indeed add more cases

to the set anyway, I will leave the issue open in

the present draft.

Ifc+Impl

Types

Nothing

Ifc

Further developments

- You may recognize a similar, symmetrical issue

when returning results (up) from functions, as

opposed to passing parameters (down). Here

again, it may happen that intermediate layers

have to propagate some results back to the top-

level functions, results that they don’t actually

need but have to be aware of. This is particularly

common for detailed diagnostics. Much of the

same reasoning as with parameters applies. For

instance, exceptions were initially seen as a

mechanism to increase compressive strength,

and partially because of poor choices by

language designers, they failed in many

languages (see the large number of try/finally in

intermediate layers) and are now discredited in

favor of, unsurprisingly, monads.

A quantification of the information differential

can be provided here as well, reversing the role

of f1 and fn while quantifying magnitude, but

keeping the direction as f1 → fn. This works well

until we consider mutable in/out parameters,

which should be counted only once. That’s one

of the reason why this is still considered a first-

cut quantitative model.

- This paper has considered only the simplest

context, where we have an information

differential between two single points (f1 and fn).

As in electrical engineering, it is however

important to characterize more complex circuits

(call graphs). This step (ideally completed

together with a study of return values) should

also provide enough details to understand

whether or not the parallel with compression

holds, or if it’s better to move past this stage,

adopt only “information differential” as a term,

and introduce a new term for what I have now

called “compressive strength”.

- The definition of information differential relies

on terms like information particle and identity in

the artifact space, which should be formalized as

well. It would also be worth explaining in more

details (with examples) why the definition is

based on the callee context, not the caller’s. This

would also be a chance to explain how some

“syntactic sugar” that we tend to consider a

mere convenience (variable number of

parameters) ends up revealing the actual

information differential (usually 1, as variable

arguments are normally treated uniformly)

compared with alternative syntax based on

overloading and fixed parameter set.

- It has been proposed that this paper is useless

as I do not yet provide either a quantification of

compressive strength or a precise

characterization of all the aforementioned

solutions (IoCs, Monads, etc.) in term of

compressive strength. This kind of criticism is

again a sign of immaturity of our field: while in

more established disciplines there are entire

books devoted to a single property for a small

family of materials (like “elasticity in rubber”),

we expect a seminal paper to have everything

figured out and quantified in the space of a few

pages. In early stages of theory formation, I

consider qualitative characterization of

phenomena a useful and important step toward

a quantitative model. We have seen many

examples where scholars have proposed more

or less sophisticated equations (just think of the

literature on coupling and cohesion) that

nobody is using in practice, relying instead on

qualitative, intuitive understanding. A complete

characterization of solutions in terms of

compressive strength alone would be useless,

because higher compressive strength does not

automatically equate with “better”. Other

balancing effects need to be formalized, like

notions that we only appreciate informally (like

delocalized plans) plus other contributing

factors like reentrancy / thread safety, not to

mention the effect of distance9, and until the

impact of those notions is clearly understood

from the qualitative perspective I will restrain

from systematic comparison of alternative

solutions.

- Two reviewers asked me if we also have a form

of tension in software. The short answer is yes,

there is a force that I’m currently inclined to

classify as tension, but would be out of scope

here.

Feedback

Constructive feedback is welcome. For short

messages consider twitter (@CarloPescio) but

for a more reasoned conversation I’ve set up a

message board, and there is a specific topic for

this paper, so consider posting there. Thanks.

Acknowledgments

The failing timber block in fig. 5 is extracted from

[16], which is released under a Creative

Commons Attribution - NonCommercial 3.0

Unported License.

Thanks to Paolo Bernardi, Claudio Brogliato,

Egon Elbre, Michel Mazumder, Daniele

Pallastrelli, Michelangelo Riccobene, Marius

Schultchen, Giorgio Sironi for their comments

and suggestions on early drafts of this paper. Of

course, any residual error / lunacy is entirely

mine.

9 When n is small, breaking interface and implementation
might be just ok in exchange for the explicit nature of
parameter passing.

References

[1] http://physicsofsoftware.com

[2] Carlo Pescio, Notes on Software Design,

Chapter 13: On Change, 2011.

[3] Carlo Pescio, Notes on Software Design,

Chapter 15: Run-Time Entanglement, 2011.

[4] Fred S. Roberts, Encyclopedia of
Mathematics and its Applications Vol. 7:
Measurement Theory with Applications to
Decision making, Utility, and the Social Sciences,
Cambridge University Press, 1985.

[5] Wikipedia, Mechanical-electrical analogies.

[6] Bryan O'Sullivan, John Goerzen, Donald

Bruce Stewart, Real World Haskell, O'Reilly

Media, 2008.

[7]

https://www.reddit.com/r/haskell/comments/

4c533b/tips_for_organizing_monadic_code_be

tter/

[8]

http://stackoverflow.com/questions/12968351

/monad-transformers-vs-passing-parameters-

to-functions

[9] http://stackoverflow.com/a/3083909

[10] Alejandro Serrano, Teaching Software

Architecture Using Haskell, International

Workshop on Trends in Functional Programming

in Education, 2014.

[11] Guy Lewis Steele, Gerald Jay Sussman, The

Art of the Interpreter or, the Modularity Complex

https://twitter.com/CarloPescio
http://physicsofsoftware.lefora.com/topic/7
http://physicsofsoftware.lefora.com/topic/7
http://physicsofsoftware.com/
http://www.carlopescio.com/2011/01/notes-on-software-design-chapter-13-on.html
http://www.carlopescio.com/2011/01/notes-on-software-design-chapter-13-on.html
http://www.carlopescio.com/2011/09/notes-on-software-design-chapter-15-run.html
http://www.carlopescio.com/2011/09/notes-on-software-design-chapter-15-run.html
https://en.wikipedia.org/wiki/Mechanical-electrical_analogies
https://www.reddit.com/r/haskell/comments/4c533b/tips_for_organizing_monadic_code_better/
https://www.reddit.com/r/haskell/comments/4c533b/tips_for_organizing_monadic_code_better/
https://www.reddit.com/r/haskell/comments/4c533b/tips_for_organizing_monadic_code_better/
http://stackoverflow.com/questions/12968351/monad-transformers-vs-passing-parameters-to-functions
http://stackoverflow.com/questions/12968351/monad-transformers-vs-passing-parameters-to-functions
http://stackoverflow.com/questions/12968351/monad-transformers-vs-passing-parameters-to-functions
http://stackoverflow.com/a/3083909
http://wiki.science.ru.nl/tfpie/images/5/56/Tfpie2014_submission_5.pdf
http://wiki.science.ru.nl/tfpie/images/5/56/Tfpie2014_submission_5.pdf
ftp://publications.ai.mit.edu/ai-publications/pdf/AIM-453.pdf
ftp://publications.ai.mit.edu/ai-publications/pdf/AIM-453.pdf

(Parts Zero, One, and Two), MIT AI Lab. AI Lab

Memo AIM-453, May 1978.

[12] Karl Lieberherr, Adaptive Object-Oriented

Software, The Demeter Method , 1996.

[13] Robert Hirschfeld, Pascal Costanza, Oscar

Nierstrasz, Context-oriented Programming, The

Journal of Object Technology, Volume 7, no. 3,

March 2008.

[14] Wikipedia, List of bridge failures

[15] Carlo Pescio, Software Design and the

Physics of Software, DDD EU 2016, Bruxelles.

[16] Christian Malaga - Chuquitaype,

Compression failure of a timber block

perpendicular to the grain: Materials Lab on-

line, Imperial College, London.

About the author

As I’m writing these notes, I’ve been

programming for 38 years, using different

languages, paradigms, technologies. I’ve been

an author and an occasional speaker. Over time

I’ve learnt a few things, within and outside the

academia. I’m slowly building a well-founded

and hopefully useful theory of software design.

For a longer version: physicsofsoftware.com/me

ftp://publications.ai.mit.edu/ai-publications/pdf/AIM-453.pdf
http://www.ccs.neu.edu/research/demeter/book/aoos.PDF
http://www.ccs.neu.edu/research/demeter/book/aoos.PDF
http://www.jot.fm/issues/issue_2008_03/article4.pdf
https://en.wikipedia.org/wiki/List_of_bridge_failures
https://www.youtube.com/watch?v=yqAFSKlALwk
https://www.youtube.com/watch?v=yqAFSKlALwk
https://www.youtube.com/watch?v=yqAFSKlALwk
http://physicsofsoftware.com/me

